
DROP

Jul 07, 2023

Contents:

1 Installation 3
1.1 Initialize a project . 4
1.2 Other DROP versions . 4
1.3 Installation without conda . 4

2 Preparing the Input Data 7
2.1 Config file . 7
2.2 Modularization of DROP . 13
2.3 Creating the sample annotation table . 14
2.4 Limiting FDR correction to subsets of genes of interest . 16
2.5 Files to download . 16
2.6 Example of RNA replicates . 17
2.7 Advanced options . 18

3 Pipeline Commands 19
3.1 Dry run . 19
3.2 Parallelizing jobs . 19
3.3 Executing subworkflows . 20
3.4 Rerunning the pipeline . 20

4 Results and Output of DROP 23
4.1 Aberrant Expression . 23
4.2 Aberrant Splicing . 24
4.3 Mono-allelic Expression . 25
4.4 RNA Variant Calling . 26

5 License 27

6 Troubleshooting 29
6.1 Common errors . 29

7 Quickstart 31

i

ii

DROP

DROP is intended to help researchers use RNA-Seq data in order to detect genes with aberrant expression, aberrant
splicing, mono-allelic expression, and RNA-Seq variant calling. It consists of 4 independent modules for each of those
strategies. After installing DROP, the user needs to fill in the config file and sample annotation table (Preparing the
Input Data). Then, DROP can be executed in multiple ways (Pipeline Commands).

Contents: 1

DROP

2 Contents:

CHAPTER 1

Installation

DROP is available on bioconda . In case the conda channel priority is set to strict, it should be reset to flexible:

conda config --set channel_priority true

We recommend using a dedicated conda environment (here: drop_env) for installing DROP. Use mamba instead of
conda as it provides more reliable and faster dependency solving.

mamba create -n drop_env -c conda-forge -c bioconda drop --override-channels

In the case of installation troubles, we recommend using the fixed DROP_<version>.yaml installation file avail-
able on our public server. Install the latest version and use the full path in the following command to install the conda
environment drop_env

mamba env create -f DROP_1.3.3.yaml

Installation time: ~ 10min

We can test whether the pipeline runs through by setting up the demo dataset in an empty directory (e.g. ~/
drop_demo).

conda activate drop_env
mkdir ~/drop_demo
cd ~/drop_demo

this command will download the necessary data and pipeline files
drop demo

DROP is run using snakemake commands.

Run time: ~25min

snakemake --cores 1 -n # dryrun
snakemake --cores 1

3

https://anaconda.org/bioconda/drop
https://www.cmm.in.tum.de/public/paper/drop_analysis/

DROP

1.1 Initialize a project

The config and sample annotation files from the demo project can be modified to be used for a new project. Alterna-
tively, a new DROP project can be set up using drop init.

cd <path/to/project>
drop init

This will create an empty config.yaml file that needs to be filled according to the project data. You also need to
prepare a sample annotation file. Go to Preparing the Input Data for more details.

1.2 Other DROP versions

The following instructions are for users who have not used conda to install DROP previously. In order for the pip
installation to take effect, you must first uninstall any previous installation using the following command. If you have
not installed DROP previously, then there is no need to uninstall it.

pip uninstall drop

Other versions of DROP, such as dev can be found in the repository under different branches. Make sure that the
Installation without conda are installed, preferably in a conda environment. Then install the desired version (e.g. dev
in this example) from GitHub using pip.

pip install git+https://github.com/gagneurlab/drop.git@dev

Alternatively, you can clone the desired branch of the repository and install from directory.

git clone -b dev https://github.com/gagneurlab/drop.git
pip install ./drop

If the package needs to be updated frequently, it is more convenient to use the -e option of pip. Any new update
pulled from the repository will be available without reinstall. Note, that this requires an explicit call to update any
existing project (Updating DROP).

pip install -e ./drop

update project directory
cd <path/to/project>
drop update

1.3 Installation without conda

The easiest way to ensure that all dependencies are installed is to install the bioconda package. Alternatively, DROP
can be installed with pip. In this case the following dependencies must be met:

• Programming languages:

– python >= 3.6 and pip >= 19.1

– R >= 3.6, <=4.0.2 and corresponding bioconductor version

• Commandline tools:

– GNU bc

4 Chapter 1. Installation

https://github.com/gagneurlab/drop
https://www.python.org/
https://pip.pypa.io/en/stable/installing/
https://www.r-project.org/
https://bioconductor.org/install/
https://www.gnu.org/software/bc/

DROP

– GNU wget

– tabix

– samtools >= 1.9

– bcftools >= 1.9

– GATK >= 4.1.8

– graphviz

– pandoc

Note: If you are using an already existing R installation, make sure that the R and bioconductor versions match.
Otherwise, use the newest versions of R and bioconductor.

At the first invocation, all the necessary R packages will be installed. As this is a lengthy process, it might be desirable
to install them in advance.

optional
Rscript <path/to/drop/repo>/drop/installRPackages.R drop/requirementsR.txt

1.3. Installation without conda 5

https://www.gnu.org/software/wget/
https://www.htslib.org/download/
https://www.htslib.org/download/
https://github.com/samtools/bcftools
https://software.broadinstitute.org/gatk/
https://www.graphviz.org/
https://pandoc.org/

DROP

6 Chapter 1. Installation

CHAPTER 2

Preparing the Input Data

The input files of DROP are:

• BAM files from RNA-seq (and their respective index files)

• VCF files from either WES or WGS (and their respective index files). Only used for the MAE module

• a configuration file containing the different parameters

• a sample annotation file

• a gene annotation file (gtf)

• a reference genome file (fasta, and its respective index)

For more details see the Materials section of the DROP manuscript.

2.1 Config file

The config file is in YAML format. It is composed of general and module-specific parameters. In YAML, a variable
can be of the following types: boolean, string, numeric, list and dictionary. They are declared by writing the variable
name followed by a colon, a space, and the value, for example:

A boolean is binary and can be true of false
boolean_var: true # or false

A string is a text. Quotation marks are not needed.
string_var: whatever text

A numeric can be an integer or a real number. A dot separates a decimal.
numeric_var: 0.05

A list is a collection of elements of the same type.
list_var:

- element_1 # elements are indented

(continues on next page)

7

https://rdcu.be/cdMmF
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

DROP

(continued from previous page)

- element_2

A dictionary contains key-value pairs. It is a collection of multiple
elements where the key is a string and the value any type.
dictionary_var:

key_1: value_1
key_2: value_2

Now we describe the different parameters needed in DROP. When providing a path to a file or directory, please provide
the full system path.

2.1.1 Global parameters

These parameters are applied to multiple modules and as a result should be consistent throughout the data you are
analyzing

8 Chapter 2. Preparing the Input Data

DROP

Param-
eter

Type Description Default/Examples

project-
Title

char-
ac-
ter

Title of the project to be displayed on the rendered
HTML output

Project 1

htmlOut-
putPath

char-
ac-
ter

Full path of the folder where the HTML files are ren-
dered

/data/project1/
htmlOutput

in-
dexWith-
Folder-
Name

booleanIf true, the basename of the project directory will be
used as prefix for the index.html file

true

genome-
Assem-
bly

char-
ac-
ter

Either hg19/hs37d5 or hg38/GRCh38, depending on
the genome assembly used for mapping

/data/project1

sam-
pleAn-
notation

char-
ac-
ter

Full path of the sample annotation table /data/project1/
sample_annotation.tsv

root char-
ac-
ter

Full path of the folder where the sub-directories pro-
cessed_data and processed_results will be created con-
taining DROP’s output files.

/data/project1

genome char-
ac-
ter

Full path of a human reference genome fasta file /path/to/hg19.fa

genome dic-
tio-
nary

(Optional) Multiple fasta files can be specified when
RNA-seq BAM files belong to different genome. as-
semblies (eg, ncbi, ucsc).

ncbi: /path/to/
hg19_ncbi.fa
ucsc: /path/to/
hg19_ucsc.fa

geneAn-
notation

dic-
tio-
nary

A key-value list of the annotation name (key) and the
full path to the GTF file (value). More than one anno-
tation file can be provided.

anno1: /path/to/gtf1.
gtf
anno2: /path/to/gtf2.
gtf

hpoFile char-
ac-
ter

Full path of the file containing HPO terms. If null
(default), it reads it from our webserver. Refer to files-
to-download

/path/to/hpo_file.tsv

tools dic-
tio-
nary

A key-value list of different commands (key) and the
command (value) to run them

gatkCmd: gatk
bcftoolsCmd: bcftools
samtoolsCmd: samtools

2.1.2 Export counts dictionary

These parameters are directly used by the exportCounts snakemake command. This section is used to designate
which aberrant expression and aberrant splicing groups should be exported into datasets that can be shared. To avoid
sharing sensitive data, only the canonical annotations as described by geneAnnotations are exported. Only the groups
excluded by excludeGroups are not exported.

2.1. Config file 9

DROP

Parame-
ter

Type Description De-
fault/Examples

geneAn-
notations

list key(s) from the geneAnnotation parameter, whose counts should be ex-
ported

-
gencode34

exclude-
Groups

list aberrant expression and aberrant splicing groups whose counts should not be
exported. If null all groups are exported.

- group1

2.1.3 Aberrant expression dictionary

These parameters are directly used by the aberrantExpression snakemake command. Aberrant expression
groups must have at least 10 samples per group. To use external counts please see the Using External Counts
section.

Parameter Type Description De-
fault/Examples

run booleanIf true, the module will be run. If false, it will be ignored. true
groups list DROP groups that should be executed in this module. If not specified

or null all groups are used.
- group1
- group2

minIds nu-
meric

A positive number indicating the minimum number of samples that a
group needs in order to be analyzed. We recommend at least 50.

1

fpkmCutoff nu-
meric

A positive number indicating the minimum FPKM per gene that 5%
of the samples should have. If a gene has less it is filtered out.

1 #
suggested
by OUTRIDER

implementa-
tion

char-
ac-
ter

Either ‘autoencoder’, ‘pca’ or ‘peer’. Methods to remove sample co-
variation in OUTRIDER.

autoencoder

zScoreCutoff nu-
meric

A non-negative number. Z scores (in absolute value) greater than this
cutoff are considered as outliers.

0

padjCutoff nu-
meric

A number between (0, 1] indicating the maximum FDR an event can
have in order to be considered an outlier.

0.05

maxTested-
Dimension-
Proportion

nu-
meric

An integer that controls the maximum value that the encoding dimen-
sion can take. Refer to advanced-options.

3

yieldSize nu-
meric

An integer that sets the batch size for counting reads within a bam file.
If memory issues persist lower the yieldSize.

2000000

genesToTest char-
ac-
ter

Full path to a yaml file specifying lists of candidate genes per sample
to test during FDR correction. See the documentation for details on
the structure of this file.

/path/to/
genes_to_test.
yaml

2.1.4 Aberrant splicing dictionary

These parameters are directly used by the aberrantSplicing snakemake command. Each group must have at
least 10 samples. This module uses FRASER to detect aberrant splicing. We recently developed an improved version
of FRASER that uses the Intron Jaccard Index instead of percent spliced in and splicing efficiency to call aberrant
splicing. To use this improved version, set the FRASER_version parameter to ‘FRASER2’. When switching
between FRASER versions, we recommend running DROP in a separate folder for each version. To use external
counts, refer to the Using External Counts section.

10 Chapter 2. Preparing the Input Data

DROP

Parame-
ter

Type Description De-
fault/Examples

run booleanIf true, the module will be run. If false, it will be ignored. true
groups list Same as in aberrant expression. # see

aberrant
expression
example

minIds nu-
meric

Same as in aberrant expression. 1

recount booleanIf true, it forces samples to be recounted. false
longRead booleanSet to true only if counting Nanopore or PacBio long reads. false
keepNon-
Standard-
Chrs

booleanSet to true if non standard chromosomes are to be kept for further analysis. false

filter booleanIf false, no filter is applied. We recommend filtering. true
minEx-
pressionI-
nOneSam-
ple

nu-
meric

The minimal read count in at least one sample required for an intron to
pass the filter.

20

quan-
tileM-
inExpres-
sion

nu-
meric

The minimum total read count (N) an intron needs to have at
the specified quantile across samples to pass the filter. See
quantileForFiltering.

10

quantile-
ForFilter-
ing

nu-
meric

Defines at which percentile the quantileMinExpression filter is ap-
plied. A value of 0.95 means that at least 5% of the samples need to have
a total read count N >= quantileMinExpression to pass the filter.

0.95

min-
DeltaPsi

nu-
meric

The minimal variation (in delta psi) required for an intron to pass the filter. 0.05

implemen-
tation

char-
ac-
ter

Either ‘PCA’ or ‘PCA-BB-Decoder’. Methods to remove sample covaria-
tion in FRASER.

PCA

FRASER_versionchar-
ac-
ter

Either ‘FRASER’ or ‘FRASER2’. FRASER

deltaPsi-
Cutoff

nu-
meric

A non-negative number. Delta psi values greater than this cutoff are con-
sidered as outliers. Set to 0.1 when using FRASER2.

0.3 #
suggested
by FRASER

padjCutoff nu-
meric

Same as in aberrant expression. 0.1

max-
TestedDi-
mension-
Proportion

nu-
meric

Same as in aberrant expression. 6

gen-
esToTest

char-
ac-
ter

Same as in aberrant expression. /path/to/
genes_to_test.
yaml

2.1.5 Mono-allelic expression (MAE) dictionary

These parameters are directly used by the mae snakemake command. MAE groups are not bound by a minimum
number of samples, but require additional information in the sample annotation table.

2.1. Config file 11

DROP

Parameter Type Description Default/Examples
run booleanIf true, the module will be run. If false, it will be ignored. true
groups list Same as in aberrant expression. # see aberrant

expression
example

gatkIg-
noreHead-
erCheck

booleanIf true (recommended), it ignores the header warnings of a VCF
file when performing the allelic counts

true

padjCutoff nu-
meric

Same as in aberrant expression. 0.05

allelicRati-
oCutoff

nu-
meric

A number between [0.5, 1) indicating the maximum allelic ratio
allele1/(allele1+allele2) for the test to be significant.

0.8

addAF booleanWhether or not to add the allele frequencies from gnomAD true
maxAF nu-

meric
Maximum allele frequency (of the minor allele) cut-off. Vari-
ants with AF equal or below this number are considered rare.

0.001

maxVarFre-
qCohort

nu-
meric

Maximum variant frequency among the cohort. 0.05

qcVcf char-
ac-
ter

Full path to the vcf file used for VCF-BAM matching. Refer to
files-to-download.

/path/to/qc_vcf.
vcf.gz

qcGroups list Same as “groups”, but for the VCF-BAM matching # see aberrant
expression
example

dnaRna-
MatchCut-
off

nu-
meric

fraction (0-1) used to seperate “matching” samples and “non-
matching” samples comparing the DNA and RNA data during
QC

0.85

2.1.6 RNA Variant Calling dictionary

Calling variants on RNA-seq data may be useful for researchers who do not have access to variant calls from genomic
data. While variant calling from WES and WGS technologies may be more traditional (and reliable), variant calling
from RNA-Seq data can provide additional evidence for the underlying causes of aberrant expression or splicing.
The RNA variant calling process uses information from multiple samples (as designated by the groups variable) to
improve the quality of the called variants. However, the larger the group size, the more costly the computation is in
terms of time and resources. To prioritize accuracy, include many samples in each DROP_GROUP, and to prioritize
speed up computation, separate samples into many groups. Additionally, certain vcf and bed files must be included to
further boost the quality of the called variants (refer to files-to-download).

12 Chapter 2. Preparing the Input Data

DROP

Pa-
rame-
ter

Type Description Default/Examples

run booleanIf true, the module will be run. If false, it will be ignored. true
groups list Same as in aberrant expression. # see

aberrant
expression
example

high-
Quali-
tyVCFs

list File paths where each item is the path to a vcf file. Each vcf file describes
known high quality variants, which are used to recalibrate sequencing
scores. Refer to files-to-download

-
known_indels.
vcf
- known_SNPs.
vcf

dbSNP char-
ac-
ter

Location of the dbSNP .vcf file. This improves both recalibrating se-
quencing scores, as well as variant calling precision. Refer to files-to-
download

path/to/
dbSNP.vcf

re-
peat_mask

char-
ac-
ter

Location of the RepeatMask .bed file. Refer to files-to-download path/to/
RepeatMask.
bed

cre-
ateSin-
gleVCF

booleanIf true, splits the multi-sample VCF file into individual sample VCF
files. This only subsets the larger vcf sample.

true

addAF booleanWhether or not to add the allele frequencies from gnomAD true
maxAF nu-

meric
Maximum allele frequency (of the minor allele) cut-off. Variants with
AF equal or below this number are considered rare.

0.001

max-
VarFre-
qCo-
hort

nu-
meric

Maximum variant frequency among the cohort. 0.05

minAlt nu-
meric

Integer describing the minimum required reads that support the alterna-
tive allele. We recommend a minimum of 3 if further filtering on your
own. 10 otherwise.

3

hcArgs char-
ac-
ter

String describing additional arguments for GATK haplocaller. Refer to
advanced-options.

""

yield-
Size

nu-
meric

An integer that sets the batch size for counting reads within a vcf file.
If memory issues persist during batch_data_table lower the yield-
Size.

100000

2.2 Modularization of DROP

DROP allows to control which modules to run via the run variable in the config file. By default, each module is set to
run: true. Setting this value to false stops a particular module from being run. This will be noted as a warning
at the beginning of the snakemake run, and the corresponding module will be renamed in the Scripts/ directory.

For example, if the AberrantExpression module is set to false, the Scripts/AberrantExpression/ directory
will be renamed to Scripts/_AberrantExpression/ which tells DROP not to execute this module.

2.2. Modularization of DROP 13

DROP

2.3 Creating the sample annotation table

For a detailed explanation of the columns of the sample annotation, please refer to Box 3 of the DROP manuscript.
Although some information has been updated since puplication, please use this documentation as the preferred syn-
tax/formatting.

Each row of the sample annotation table corresponds to a unique pair of RNA and DNA samples derived from the same
individual. An RNA assay can belong to one or more DNA assays, and vice-versa. If so, they must be specified in
different rows. The required columns are RNA_ID, RNA_BAM_FILE and DROP_GROUP, plus other module-specific
ones (see DROP manuscript).

The following columns describe the RNA-seq experimental setup: PAIRED_END, STRAND, COUNT_MODE and
COUNT_OVERLAPS. They affect the counting procedures of the aberrant expression and splicing modules. For a
detailed explanation, refer to the documentation of HTSeq.

To run the MAE module, the columns DNA_ID and DNA_VCF_FILE are needed. MAE can not be run in samples
using external counts as we need to use the RNA_BAM_FILE to count reads supporting each allele of the heterozygous
variants found in the DNA_VCF_FILE.

In case RNA-seq BAM files belong to different genome assemblies (eg, ncbi, ucsc), multiple reference genome fasta
files can be specified. Add a column called GENOME that contains, for each sample, the key from the genome
parameter in the config file that matches its genome assembly (eg, ncbi or ucsc).

The sample annotation file must be saved in the tab-separated values (tsv) format. The column order does not matter.
Also, it does not matter where it is stored, as the path is specified in the config file. Here we provide some examples
on how to deal with certain situations. For simplicity, we do not include all possible columns in the examples.

2.3.1 Using External Counts

DROP can utilize external counts for the aberrantExpression and aberrantSplicing modules which can
enhance the statistical power of these modules by providing more samples from which we can build a distribution of
counts and detect outliers. However this process introduces some particular issues that need to be addressed to make
sure it is a valuable addition to the experiment.

In case external counts are included, add a new row for each sample from those files (or a subset if not all sam-
ples are needed). Add the columns: GENE_COUNTS_FILE (for aberrant expression), GENE_ANNOTATON, and
SPLICE_COUNTS_DIR (for aberrant splicing). These columns should remain empty for samples processed locally
(from RNA_BAM).

Aberrant Expression

Using external counts for aberrant expression forces you to use the exact same gene annotation for each external
sample as well as using the same gene annotation file specified in the config file Global parameters section.
This is to avoid potential mismatching on counting, 2 different gene annotations could drastically affect which reads
are counted in which region drastically skewing the results.

The user must also use special consideration when building the sample annotation table. Samples using external
counts need only RNA_ID which must exactly match the column header in the external count file DROP_GROUP,
GENE_COUNTS_FILE, and GENE_ANNOTATION which must contain the exact key specified in the config. The
other columns should remain empty.

Using exportCounts generates the sharable GENE_COUNTS_FILE file in the appropriate ROOT_DIR/Output/
processed_results/exported_counts/ sub-directory.

14 Chapter 2. Preparing the Input Data

https://rdcu.be/cdMmF
https://htseq.readthedocs.io/en/latest/

DROP

Aberrant Splicing

Using external counts for aberrant splicing reduces the number of introns processed to only those that are ex-
actly the same between the local and external junctions. Because rare junctions may be personally identifiable the
exportCounts command only exports regions canonically mentioned in the gtf file. As a result, when merging the
external counts with the local counts we only match introns that are exact between the 2 sets, this is to ensure that if a
region is missing we don’t introduce 0 counts into the distribution calculations.

The user must also use special consideration when building the sample annotation table. Samples using external
counts need only RNA_ID which must exactly match the column header in the external count file DROP_GROUP, and
SPLICE_COUNTS_DIR. SPLICE_COUNTS_DIR is the directory containing the set of 5 needed count files. The
other columns should remain empty.

Using exportCounts generates the necessary files in the appropriate ROOT_DIR/Output/
processed_results/exported_counts/ sub-directory

SPLICE_COUNTS_DIR should contain the following:

• k_j_counts.tsv.gz

• k_theta_counts.tsv.gz

• n_psi3_counts.tsv.gz

• n_psi5_counts.tsv.gz

• n_theta_counts.tsv.gz

Publicly available DROP external counts

You can find different sets of publicly available external counts to add to your analysis on our github page

If you want to contribute with your own count matrices, please contact us: yepez at in.tum.de.

2.3.2 External count examples

In case counts from external matrices are to be integrated into the analysis, the sample annotation must be built in a
particular way A new row must be added for each sample from the count matrix that should be included in the analysis.
The RNA_ID must match the column header of the external files, the RNA_BAM_FILE must not be specified. The
DROP_GROUP of the local and external samples that are to be analyzed together must be the same. For aberrant
expression, the GENE_ANNOTATION of the external counts and the key of the geneAnnotation parameter from the
config file must match.

This example will use the DROP_GROUP BLOOD_AE for the aberrant expression module (containing S10R, EXT-
1R, EXT-2R) and the DROP_GROUP BLOOD_AS for the aberrant expression module (containing S10R, EXT-2R,
EXT-3R)

RNA_IDDNA_IDDROP_GROUP RNA_BAM_FILEGENE_COUNTS_FILEGENE_ANNOTATIONSPLICE_COUNTS_DIR
S10R S10G BLOOD_AE,BLOOD_AS/path/to/S10R.BAM
EXT-
1R

BLOOD_AE /path/to/externalCounts.tsv.gzgencode34

EXT-
2R

BLOOD_AE,BLOOD_AS /path/to/externalCounts.tsv.gzgencode34 /path/to/externalCountDir

EXT-
3R

BLOOD_AS /path/to/externalCountDir

2.3. Creating the sample annotation table 15

https://github.com/gagneurlab/drop/#datasets

DROP

2.4 Limiting FDR correction to subsets of genes of interest

In addition to returning transcriptome-wide results, DROP provides the option to limit the FDR correction to user-
provided genes of interest in the aberrantExpression and aberrantSplicing modules. These could, for
example, be all OMIM genes. It is also possible to provide sample-specific genes such as all genes with a rare
splice-region variant for each sample. To use this feature, a YAML file containing the set(s) of genes to test (per
sample or for all samples) needs to be specified in the genesToTest parameter of the aberrantExpression
and aberrantSplicing modules in the config file. If no file is provided, only transcriptome-wide results will
be reported. Otherwise, the results tables of the aberrantExpression and aberrantSplicing modules will
additionally report aberrant events passing the cutoffs based on calculating the FDR with respect to the genes in the
provided lists.

2.4.1 Creating the YAML file specifying subsets of genes to test

The file containing the list of genes (HGNC symbols) to be tested must be a YAML file, where the variable names
specify the name of each set of tested genes. In the output of DROP, this name will be used to identify the set in
the results table. Each set can either be: i) a list of genes, in which case the set will be tested for all samples, or
ii) sample-specific sets that can be created by giving the RNA_ID of the sample for which the set should be used as
the name (see example below). This YAML file can be created in R using yaml::write_yaml(subsetList,
filepath), where subsetList is a named list of named lists containing the sets of genes to test. The gene
names must match those from the provided gtf file. We currently do not support Ensembl ids as input. The
table with extracted gene names from the gtf file is located under: root/processed_data/preprocess/
{geneAnnotation}/gene_name_mapping_{geneAnnotation}.tsv. In the following example, the
name of the global set of genes is Genes_to_test_on_all_samples and the name of the sample-specific
set is Genes_with_rare_splice_variants:

Example content of /path/to/genes_to_test.yaml:

Genes_to_test_on_all_samples:
- BTG3
- GATD3B
- PKNOX1
- APP
- RRP1
- WRB-SH3BGR
- SLC19A1

Genes_with_rare_splice_variants:
sample1:
- ABCG1
- MCOLN1
- SLC45A1
sample2:
- CLIC6
- ATP5PO
- WRB
- ETS2
- HLCS

2.5 Files to download

The following files can be downloaded from our public repository.

16 Chapter 2. Preparing the Input Data

https://www.cmm.in.tum.de/public/paper/drop_analysis/resource/

DROP

1. VCF file containing different positions to be used to match DNA with RNA files. The file name is
qc_vcf_1000G_{genome_build}.vcf.gz. One file is available for each genome build (hg19/hs37d5 and
hg38/GRCh38). Download it together with the corresponding .tbi file. Indicate the full path to the vcf file in the
qcVcf key in the mono-allelic expression dictionary. This file is only needed for the MAE module. Otherwise, write
null in the qcVcf key.

2. Text file containing the relations between genes and phenotypes encoded as HPO terms. The file name is
hpo_genes.tsv.gz. Download it and indicate the full path to it in the hpoFile key. The file is only needed in
case HPO terms are specified in the sample annotation. Otherwise, write null in the hpoFile key.

3. For the rnaVariantCallingmodule known high quality variants are needed to calibrate variant and sequencing
scores to be used in the rnaVariantCalling module in the highQualityVCF config parameter. These and
the associated .tbi indexes can be downloaded for hg19 at our public repository and for hg38 through the Broad
Institute’s resource bundle.

hg19

• Mills_and_1000G_gold_standard.indels.hg19.sites.chrPrefix.vcf.gz

• 1000G_phase1.snps.high_confidence.hg19.sites.chrPrefix.vcf.gz

hg38

• Mills_and_1000G_gold_standard.indels.hg38.vcf.gz

• Homo_sapiens_assembly38.known_indels.vcf.gz

We also recommend using the variants from dbSNP which is quite large. You can download them and their associated
.tbi indexes from NCBI

• follow links for the current version (human_9606/VCF/00-All.vcf.gz) or older assemblies (eg.
human_9606_b151_GRCh37p13/VCF/00-All.vcf.gz)

The repeat masker file is used to filter hard-to-call regions. In general, this removes false-positive calls, however,
some targeted and known splicing defects lie within these repeat regions. Understand that this filter is labeled Mask
in the result VCF files. You can download the repeat mask and associated .idx on our public repository. for the
repeat_mask config parameter.

2.6 Example of RNA replicates

RNA_ID DNA_ID DROP_GROUP RNA_BAM_FILE DNA_VCF_FILE
S10R_B S10G BLOOD /path/to/S10R_B.BAM /path/to/S10G.vcf.gz
S10R_M S10G MUSCLE /path/to/S10R_M.BAM /path/to/S10G.vcf.gz

2.6.1 Example of DNA replicates

RNA_ID DNA_ID DROP_GROUP RNA_BAM_FILE DNA_VCF_FILE
S20R S20E WES /path/to/S20R.BAM /path/to/S20E.vcf.gz
S20R S20G WGS /path/to/S20R.BAM /path/to/S20G.vcf.gz

2.6. Example of RNA replicates 17

https://www.cmm.in.tum.de/public/paper/drop_analysis/resource/
https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle
https://ftp.ncbi.nih.gov/snp/organisms/
https://www.cmm.in.tum.de/public/paper/drop_analysis/resource/

DROP

2.6.2 Example of a multi-sample vcf file

RNA_ID DNA_ID DROP_GROUP RNA_BAM_FILE DNA_VCF_FILE
S10R S10G WGS /path/to/S10R.BAM /path/to/multi_sample.vcf.gz
S20R S20G WGS /path/to/S20R.BAM /path/to/multi_sample.vcf.gz

2.7 Advanced options

A local copy of DROP can be edited and modified. For example, the user might want to add new plots to the Summary
scripts, add additional columns to the results tables, or modify the number of threads allowed for a script.

Note: DROP needs to be installed from a local directory using pip install -e <path/to/drop-repo> so
that any changes in the code will be available in the next pipeline run Any changes made to the R code need to be
updated with drop update in the project directory.

The aberrant expression and splicing modules use a denoising autoencoder to correct for sample covariation. This
process reduces the fitting space to a dimension smaller than the number of samples N. The encoding dimension is op-
timized. By default, the maximum value in the search space is N/3 for the aberrant expression, and N/6 for the aberrant
splicing case. The user can specify the denominator with the parameter maxTestedDimensionProportion.

DROP allows that BAM files from RNA-seq from samples belonging to the same DROP_GROUP were aligned to
different genome assemblies from the same build (e.g., some to ucsc and others to ncbi, but all to either hg19 or
hg38). If so, for the aberrant expression and splicing modules, no special configuration is needed. For the MAE and
rnaVariantCalling modules, the different fasta files must be specified as a dictionary in the genome parameter of the
config file, and, for each sample, the corresponding key of the genome dictionary must be specified in the GENOME
column of the sample annotation. In additon, DROP allows that BAM files from RNA-seq were aligned to one genome
assembly (eg ucsc) and the corresponding VCF files from DNA sequencing to another genome assembly (eg ncbi). If
so, the assembly of the reference genome fasta file must correspond to the one of the BAM file from RNA-seq.

Specific haplotype parameters can be denoted in the config file to further customize the RNA-seq variant calling. The
different available parameters can be found in the HaplotypeCaller GATK documentation. One example for the value
in the config file would be “–assembly-region-padding 100 –base-quality-score-threshold 18”.

18 Chapter 2. Preparing the Input Data

https://gatk.broadinstitute.org/hc/en-us/articles/5358864757787-HaplotypeCaller

CHAPTER 3

Pipeline Commands

DROP is a Snakemake pipeline, so it is called with the snakemake command.

3.1 Dry run

Open a terminal in your project repository. Execute

snakemake --cores 1 -n

This will perform a dry-run, which means it will display all the steps (or rules) that need to be executed. To also
display the reason why those rules need to be executed, run

snakemake --cores 1 -nr

A simplified dry-run can be achieved using the -q parameter.

snakemake --cores 1 -nq

Calling snakemake --cores 1 without any additional parameters will execute the whole workflow. Snakemake
requires you to designate the number of cores.

3.2 Parallelizing jobs

DROP’s steps are computationally heavy, therefore it is highly recommended to run them in parallel. Snakemake
automatically determines the steps that can be parallelized. The user simply needs to specify the maximum number of
cores that Snakemake can take, e.g. for 10 cores:

snakemake --cores 10

19

https://snakemake.readthedocs.io/en/stable/executing/cli.html

DROP

3.3 Executing subworkflows

Every module can be called independently.

snakemake <subworkflow>

Subworkflow Description
aberrantExpression Aberrant expression pipeline
aberrantSplicing Aberrant splicing pipeline
mae Monoallelic expression pipeline
sampleQC DNA-RNA matching (already part of mae, but can be executed independently as well)
rnaVariantCalling RNA Variant Calling pipeline

For example, to run the aberrant expression pipeline with 10 cores, execute the following

snakemake aberrantExpression --cores 10

3.4 Rerunning the pipeline

When DROP is updated or jobs fail, the following commands can be used to rerun and troubleshoot.

3.4.1 Unlocking the pipeline

While running, Snakemake locks the directory. If, for a whatever reason, the pipeline was interrupted, the directory
might be kept locked. If this is the case, call

snakemake unlock

3.4.2 Updating DROP

The developers of DROP are active in making DROP a better tool. As a result there are often bug fixes or improvements
that are implemented and released in new versions. You can check them out in the What’s new section of the README.

When updating DROP we recommend using the conda/mamba functions to maintain any dependencies that could be
related.

mamba update drop

If you were working with a pip installation of DROP then you would need to reinstall using pip directly from github.

pip install git+https://github.com/gagneurlab/drop.git

Once you have successfully bumped the DROP version to the latest, you will still need to update your project folder.
drop update will reset the local project’s Scripts/ directory to match the installed version, so be sure to save any
additional scripts or analyses in another location.

To complete your update, you must run the following to get your local directory to match the version:

drop update

20 Chapter 3. Pipeline Commands

https://github.com/gagneurlab/drop#whats-new

DROP

3.4.3 Skipping recomputation of files

If the pipeline is interrupted and restarted, it will continue with the last unsuccessful job in the job graph. If a script is
updated with minor change, e.g. when calling drop update, all the jobs of the modified script and its downstream
steps will be rerun. However, in some cases one might want to keep the intermediate files instead and continue with
the missing files. In order to do so, first execute

snakemake <rule> --touch

for whichever rule or module you want to continue the computation. The --touch command touches all output
files required by the pipeline that have already been computed. Omitting the rule will lead to accessing the complete
pipeline. Afterwards, run

snakemake unlock

Overall, we recommend reading the snakemake documentation for further fine-tuning of the execution.

3.4. Rerunning the pipeline 21

DROP

22 Chapter 3. Pipeline Commands

CHAPTER 4

Results and Output of DROP

DROP is intended to help researchers use RNA-Seq data in order to detect genes with aberrant expression, aberrant
splicing and mono-allelic expression. By simplifying the workflow process we hope to provide easy-to-read HTML
files and output files. This section explains the results files. The paths of the output files correspond to the ones from
the demo (that can be run with the following code snippet):

#install drop
mamba create -n drop_env -c conda-forge -c bioconda drop
conda activate drop_env

mkdir drop_demo
cd drop_demo
drop demo

snakemake -c1

4.1 Aberrant Expression

4.1.1 HTML file

Looking at the resulting Output/html/drop_demo_index.html we can see the AberrantExpression
tab at the top of the screen. The Overview tab contains links to the:

• Counts Summaries for each aberrant expression group

– number of local and external samples

– Mapped reads and size factors for each sample

– histograms showing the mean count distribution with different conditions

– expressed genes within each sample and as a dataset

• Outrider Summaries for each aberrant expression group

23

DROP

– aberrantly expressed genes per sample

– correlation between samples before and after the autoencoder

– biological coefficient of variation

– aberrant samples

– results table

• Files for each aberrant expression group

– OUTRIDER datasets

* Follow the OUTRIDER vignette for individual OUTRIDER object file (ods) analysis.

– Results tables

* results.tsv this text file contains only the significant genes and samples that meet the
cutoffs defined in the config file for padjCutoff and zScoreCutoff.

4.1.2 Local result files

Additionally the aberrantExpression module creates the file Output/processed_results/
aberrant_expression/{annotation}/outrider/{drop_group}/OUTRIDER_results_all.
Rds. This file contains the entire OUTRIDER results table regardless of significance.

4.2 Aberrant Splicing

4.2.1 HTML file

Looking at the resulting Output/html/drop_demo_index.html we can see the AberrantSplicing tab
at the top of the screen. The Overview tab contains links to the:

• Counting Summaries for each aberrant splicing group

– number of local and external samples

– number introns/splice sites before and after merging

– comparison of local and external mean counts

– histograms showing the junction expression before and after filtering and variability

• FRASER Summaries for each aberrant splicing group

– the number of samples, introns, and splice sites

– correlation between samples before and after the autoencoder

– results table

• Files for each aberrant splicing group

– FRASER datasets (fds)

* Follow the FRASER vignette for individual FRASER object file (fds) analysis.

– Results tables

* results_per_junction.tsv this text file contains only significant junctions that meet
the cutoffs defined in the config file.

24 Chapter 4. Results and Output of DROP

https://www.bioconductor.org/packages/devel/bioc/vignettes/OUTRIDER/inst/doc/OUTRIDER.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/FRASER/inst/doc/FRASER.pdf

DROP

4.2.2 Local result files

Additionally the aberrantSplicing module creates the following file Output/processed_results/
aberrant_splicing/results/{annotation}/fraser/{drop_group}/results.tsv. This text
file contains only significant junctions that meet the cutoffs defined in the config file, aggregated at the gene level.
Any sample/gene pair is represented by only the most significant junction.

4.3 Mono-allelic Expression

4.3.1 HTML file

Looking at the resulting Output/html/drop_demo_index.html we can see the
MonoallelicExpression tab at the top of the screen. The Overview tab contains links to the:

• Results for each mae group

– number of samples, genes, and mono-allelically expressed heterozygous SNVs

– a cascade plot that shows additional filters

– histogram of inner cohort frequency

– summary of the cascade plot and results table

• Files for each mae group

– Allelic counts

* a directory containing the allelic counts of heterozygous variants

– Results data tables of each sample (.Rds)

* Rds objects containing the full results table regardless of MAE status

– Significant MAE results tables

* a link to the results file

* Only contains significant MAE for the alternative allele results and results that pass the config
file cutoffs

• Quality Control

– QC Overview

* For each mae group QC checks for DNA/RNA matching

4.3.2 Local result files

Additionally the mae module creates the following files:

• Output/processed_results/mae/{drop_group}/MAE_results_all_{annotation}.tsv.gz

– this file contains the MAE results of all heterozygous SNVs regardless of significance

• Output/processed_results/mae/{drop_group}/MAE_results_{annotation}.tsv

– this is the file linked in the HTML document and described above

• Output/processed_results/mae/{drop_group}/MAE_results_{annotation}_rare.tsv

4.3. Mono-allelic Expression 25

DROP

– this file is a subset of MAE_results_{annotation}.tsv with only the variants that pass the
allele frequency cutoffs. If add_AF is set to true in config file must meet minimum AF set by
max_AF. Additionally, the inner-cohort frequency must meet the maxVarFreqCohort cutoff

4.4 RNA Variant Calling

4.4.1 HTML file

Looking at the resulting Output/html/drop_demo_index.html we can see the rnaVariantCalling tab
at the top of the screen. The Overview tab contains links to the:

• Results for each rvc batch

– a table summarizing the variants and genotypes that pass the variant calling filters for each sample

* FILTER: explained below

* cohortFreq: frequency of the variant within the batch (number of samples with the variant
/ total samples)

* MAX_AF: frequency of the variant from gnomAD if enabled

– a subset table showing only the PASS_rare variants

• Boxplot and underyling table showing the distribution of variants and the effect of various filters, split by genotype

– The following labels are applied and are not excluded from the final .vcf files.

* PASS_common: passes variant calling thresholds and fails either max_AF or
maxVarFreqCohort cutoffs

* PASS_rare: passes variant calling thresholds and config max_AF and
maxVarFreqCohort cutoffs

* Seq_filter: fails one of the default variant calling filters

* Mask: variant falls in a repeat/mask region

* minALT: variant passes Seq_filter but doesn’t meet config minALT criteria

• Boxplot and underyling table showing the number of variants that pass or fail the different filters

4.4.2 Local result files

Additionally the rnaVariantCalling module creates the following output directories:

• Output/processed_results/rnaVariantCalling/batch_vcfs

– this directory contains the multi-sample vcf files for each batch

• Output/processed_results/rnaVariantCalling/sample_vcfs

– this directory contains the single-sample vcf files if the config parameter createSingleVCF is set
to true

• Output/processed_results/rnaVariantCalling/data_tables

– this directory contains data tables for each batch of vcfs

26 Chapter 4. Results and Output of DROP

CHAPTER 5

License

MIT License

Copyright (c) 2019, Michaela Mueller, Vicente Yepez, Christian Mertes, Daniela Andrade, Julien Gagneur

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

27

DROP

28 Chapter 5. License

CHAPTER 6

Troubleshooting

In case you have any issues, please check the previous issues on git and the Troubleshoot section of the DROP paper.
If you have a new issue, please create a new one on git.

6.1 Common errors

The MAE:mae_allelicCounts step is susceptible to fail if:

1. The chromosomes styles of the reference genome and the BAM files do not match

Solution: Identify the chromosomes style of the BAM file. Obtain an appropriate reference genome file and specify it
in the config file.

2. The BAM file does not have the correct Read Groups documentation for both the header and reads. You
can often identify if the BAM file has any problems by using the command gatk ValidateSamFile -I
path/to/bam_file.bam

Solution: To fix this is often dependent on the individual case, but some combination of the following tools is quite
helpful:

• samtools reheader

• gatk AddOrReplaceReadGroups

29

https://github.com/gagneurlab/drop
http://www.htslib.org/doc/samtools-reheader.html
https://gatk.broadinstitute.org/hc/en-us/articles/5358911906459-AddOrReplaceReadGroups-Picard-

DROP

30 Chapter 6. Troubleshooting

CHAPTER 7

Quickstart

DROP is available on bioconda. We recommend using a dedicated conda environment. (installation time: ~ 10min)
Use mamba instead of conda as it provides more reliable and faster dependency solving.

mamba create -n drop -c conda-forge -c bioconda drop

Test installation with demo project

mkdir ~/drop_demo
cd ~/drop_demo
drop demo

The pipeline can be run using snakemake commands

snakemake --cores 1 -n # dryrun
snakemake --cores 1

Expected runtime: 25 min

For more information on different installation options, refer to Installation.

31

https://anaconda.org/bioconda/drop
https://snakemake.readthedocs.io/

	Installation
	Initialize a project
	Other DROP versions
	Installation without conda

	Preparing the Input Data
	Config file
	Modularization of DROP
	Creating the sample annotation table
	Limiting FDR correction to subsets of genes of interest
	Files to download
	Example of RNA replicates
	Advanced options

	Pipeline Commands
	Dry run
	Parallelizing jobs
	Executing subworkflows
	Rerunning the pipeline

	Results and Output of DROP
	Aberrant Expression
	Aberrant Splicing
	Mono-allelic Expression
	RNA Variant Calling

	License
	Troubleshooting
	Common errors

	Quickstart

